A protein in a box

Exactly one year ago today I defended my doctoral thesis in Delft. Fast-forward one year, and I find myself writing these words in the California sun. How different life has become! Having embarked on an exciting new project, I am now challenged to think about a whole new universe of fascinating problems. Yet I do enjoy looking back every now and then to remember the good times of grad school. The good times of a protein in a box.


What is life? At the very least it is a concept that we humans find surprisingly difficult to define. Though generally wet and dynamic1, arguments about what defines life inevitably involve terms like ‘reproduction’, ‘growth’, and ‘adaptation’ – matters very common to cells and viruses alike, yet whether the latter belong to the category of living things is a matter of ongoing debate. For the purpose of this thesis (as well as for my own understanding), I adopt a less materialistic and more conceptual definition of life:

Life is a process brought forward by the self-organization of molecules, a process that seemingly violates the second law of thermodynamics2 as it increasingly acquires and maintains information over timescales that vastly exceed the lifetime of the molecules holding this information.

In this manner the distinction between a virus and a cell becomes rather meaningless: viruses are just as much part of the process that we know as ‘life’ as a homo sapiens like you or me is.3 In addition, it allows me to conveniently classify my thesis work as “an effort to gain better understanding of the molecular processes and building blocks of life”. Though this classification is rather broad – as myriads of doctoral theses written over the past century or so belong to this category – my thesis belongs to a relatively small and novel subcategory of the ‘gaining insight into the building blocks of life’ class by making use of two concepts: single-molecule and bottom-up approach.

Continue reading “A protein in a box”

Tus fuss (1)

 

The main actors.

My Tus paper in the news, those interested can start reading up. Again, more to follow

 

Het ei is gelegd: een polymerasepaper in 4 stappen

Zo, het heeft even geduurd, maar eindelijk is het dan zover: het ei is gelegd. In de vorm van een artikel, dat dan weer wel. Leefde ik aan het eind van mijn eerste jaar (anno 2012) nog in de waan dat het een kwestie van weken zou zijn voor publicatie, weet ik nu dus wel beter. Het p2 onderzoek waar ik een flinke bijdrage aan heb geleverd – waardoor het werk een stevige positie in mijn toekomstige proefschrift heeft gekregen – heeft van begin tot eind zo’n 7 jaar in beslag genomen.* Karakteriseren met termen als ‘uitputtingsslag’ of ‘marathon’ zou derhalve een understatement zijn. Hoewel het gros van de data in 2012 al gemeten is, heeft het verhaal in de jaren daarna met name wat dataverwerking en -analyse betreft nog een enorme ontwikkeling doorgemaakt. Wat we nu presenteren is een compleet verhaal geworden dat zowel op experimenteel als op theoretisch vlak vernieuwend is. Dit zeg ik niet alleen omdat ik bevooroordeeld ben, om 4 redenen brengt dit werk wat nieuwe dingen naar voren, begin hier met lezen!

NB Is deze tak van sport helemaal nieuw? Lees dan hier waarom we überhaubt aan een enkel molecuul zouden willen meten, hier een inleiding over de magnetische pincet (magnetic tweezers) en hier mijn vorige verslag over dit project. Continue reading “Het ei is gelegd: een polymerasepaper in 4 stappen”

1. Eindelijk fatsoenlijke MT statistiek dankzij multiplexen.

Om te beginnen, waar de single-molecule magnetic tweezerstechniek zich hiervoor beperkte tot statistieken van enkele tot maximaal enkele tientallen metingen, omvat deze studie bij elkaar ruim 1000 unieke metingen aan individuele RNA polymerases. Technische vooruitgang op het gebied van camera’s en trackingsoftware hebben dit mogelijk gemaakt. Hoewel wij niet de enige groep zijn die dit soort technische vooruitgangen boekt, laten wij de mogelijkheden die de techniek biedt zien aan de hand van een biologisch vraagstuk. Zonder deze capaciteitsuitbreiding was dit onderzoek niet mogelijk geweest.

Grootte van het beeld anno 2009.

Anno 2011, toen ik begon met het opnemen van data, lag de maximale hoeveelheid RNA moleculen die we tegelijk konden visualiseren met behulp van magnetische balletjes – ik noem ze beads vanaf nu – rond de 80 op een goede dag. Nu ligt dat op 500-600. Dat dit mogelijk is ligt aan een combinatie van twee dingen: 1) meer megapixels in een camera: in 2011 hadden we een 1.4 megapixel camera, nu een 12 megapixel camera. 2) Een norme ontwikkeling in de software die het mogelijk maakt om gigabytes aan data per seconde te kunnnen verwerken. Er is dus aan het RNA-preparaat niets veranderd, het is de grootte van het oppervlak die we met een foto kunnen bestrijken (zonder kwaliteitsverlies) dat enorm is toegenomen. De echte uitdaging ligt hier voor ons natuurlijk niet in het kopen van een camera met meer megapixels, maar in hoe we ervoor zorgen dat een pc deze enorme toename aan hoeveelheid data nog steeds binnen een redelijke tijd kan verwerken.

Continue reading “1. Eindelijk fatsoenlijke MT statistiek dankzij multiplexen.”